You need to login before you can view or download document
Spatial distribution of potential soil constraints affecting nitrogen management in the Wet Tropics
By DM Skocaj, BL Schroeder, AP Hurney, A Rigby and D Telford
Position in the landscape and climatic conditions experienced during the growing season, especially following the application of nitrogen (N) fertiliser, has important implications for crop growth, N uptake and N losses. Understanding the spatial distribution of soils where crop growth and responsiveness to applied N may be constrained in wet or dry years will allow growers and advisors to refine N-management strategies. To identify soils where crop growth and responsiveness to applied N may be restricted, a system of grouping soils that better reflected agronomic performance under different climatic conditions was required. The categorisation system considered position in the landscape, N-mineralisation potential, soil water-holding capacity in both wet and dry years, propensity to waterlog in wet years and presence of a water table in wet years. In dry years, waterlogging and the presence of a water table do not impact crop growth to the same extent as moisture availability, and, hence, in dry years, it is more important to categorise soils based on water-holding capacity. The major sugarcane-growing soils in the Tully and South Johnstone mill areas were categorised using this system. This resulted in five soil groups to describe the impact on crop growth and N responsiveness in wet and dry years. Given the application of N fertiliser to ratoon crops predominately occurs around spring, wet years were defined as receiving high spring-summer rainfall, whereas dry years were defined as receiving low spring-summer rainfall. Classifying wet and dry years according to spring-summer rainfall also allows growers and advisors to refer to seasonal climate forecasting indices for guidance on the likelihood of experiencing a wet or dry year. In wet years, the impact on crop growth, responsiveness to applied N and potential for lower N uptake is greatest for soil group five. These soils tend to occur in the lowest positions in the landscape, experience severe waterlogging and a persistent water table. They are also subject to frequent water inundation following extreme rainfall events. The spatial identification of soil constraints will complement the development of whole-of-farm nutrient-management plans in the Wet Tropics region. Knowledge of soil constraints influencing sugarcane growth and responsiveness to N will allow growers and advisors to better identify areas where nutrient-management strategies may require further fine-tuning. This information may also be of value in improving other management decisions including varietal selection and harvest scheduling. Key words Sugarcane soils, nitrogen, waterlogging, Tully, Johnstone